Intramolecular Steric Factors in the Thermolysis of 4-Alkylidene-1-pyrazolines

Gerard N. LeFevre and Robert J. Crawford*

Contribution from the Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada T6G 2G2. Received July 3, 1985

Abstract

Secondary deuterium kinetic isotope effects and product proportions are measured for several methyl-substituted 4-methylene-1-pyrazolines and deuterated isotopomers. The kinetic data support a single-bond-cleavage mechanism, and the products indicate that three modes of ring closure are required. Evidence is presented for a series of monomethyl compounds to suggest that the mechanism is more complex than a two-step scheme would predict and that the interconversion of a series of intermediates 46 is required.

Linear azoalkanes ($\mathrm{R}-\mathrm{N}=\mathrm{N}-\mathrm{R}$) fit the general rule that tertiary carbon-nitrogen bonds undergo homolysis more rapidly than secondary which in turn react faster than primary. ${ }^{1}$ Cyclic systems are not so well-behaved, and sometimes the replacement of a hydrogen by an alkyl group slows down the rate or has little or no effect. ${ }^{2}$ In our studies of the thermolysis of 4-alkylid-ene-1-pyrazolines, we have observed some very unusual relative rates and enthalpy changes as we replaced hydrogens with methyls ${ }^{3,4}$ (Table I). It is clear from examining the data that substituting hydrogen with a methyl leads to a significant decrease in the rate, e.g., compare 1, 2, and 4. Substitution α to the nitrogen either has little effect or as in the case of 5 and 6 it significantly increases the activation energy. ${ }^{5}$ We have studied the mechanism of thermolysis of $\mathbf{1}$ to alkylidenecyclopropanes in detail by examining the secondary deuterium isotope effects on both the rate and the product-determining steps. ${ }^{3}$ The rate-determining step is consistent with the cleavage of one carbon-nitrogen bond to form an allylic diazenyl radical (Scheme I). The proportions of methylenecyclopropanes produced then depend upon an isotope effect for rotation of CH_{2} in preference to CD_{2} of the allylic system. While it is not clear that the nitrogen is involved in the product-determining step, it is necessary to have one of the α methylenes stereochemically unique in order to accurately predict the product proportions. ${ }^{3}$ The decrease in rate for $\mathbf{2}$ and 6 relative to $\mathbf{1}$ and $\mathbf{5}$ is due to steric crowding in the transition state caused by the decrease of the $\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{6}$ bond angle brought about by the homolysis of the $\mathrm{C}-\mathrm{N}$ bond. ${ }^{7}$ We have chosen to investigate in greater detail the thermolysis of 3 -methyl-4-methylene-1pyrazoline (3), 3,3-dimethyl-4-methylene-1-pyrazoline (4), and deuterium-labeled derivatives in an attempt to assess the extent that steric compression in the transition state may be responsible for some of the anomalous relative rates observed in Table I.

The bicyclic [2.2.1] analogues of the 4 -alkylidene-1-pyrazolines have been carefully studied by Berson and his collaborators, ${ }^{5}$ and they have presented compelling evidence for the singlet tri-methylenemethane-like intermediate. By examining the monocyclic systems having distinguishing features at each of the carbons, we endeavoured to test for a nitrogen-free singlet intermediate in the less-constrained systems.

Results

The deuterated substrates, in Table II, were synthesized as outlined in Schemes II-V. Their isotopic purity was assessed by mass spectrometry and both proton and deuterium magnetic resonance spectroscopy. The Diels-Alder adduct 18 was prepared in 29% yield by heating methyl 3 -methyl-2-butenoate and cy-

[^0]Table I. Activation Parameters and Relative Rates at $170^{\circ} \mathrm{C}$ for Some 4-Alkylidene-1-pyrazolines

1

	compd	$\begin{gathered} E_{\mathbf{3}}, \\ \mathrm{kcal}^{2} \mathrm{~mol}^{-1} \end{gathered}$	$\log A$	$\begin{aligned} & \text { rel rate } \\ & \text { at } 170^{\circ} \mathrm{C} \end{aligned}$	ref
1a	$\mathrm{R}_{1}-\mathrm{R}_{4}=\mathrm{H}$	33.6 ± 0.7	13.75 ± 0.35	1.00	3
2	$\begin{aligned} & \mathrm{R}_{1}-\mathrm{R}_{3}=\mathrm{H} ; \mathrm{R}_{4}, \mathrm{R}_{5} \\ & \quad=\mathrm{CH}_{3} \end{aligned}$	35.9 ± 1.0	14.6 ± 0.9	0.55	2
3	$\begin{aligned} & \mathrm{R}_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}-\mathrm{R}_{5}= \\ & \mathrm{H} \end{aligned}$	33.0 ± 1.0	13.4 ± 1.0	1.04	2
4	$\begin{gathered} \mathbf{R}_{1}, \mathrm{R}_{2}=\mathrm{CH}_{3} ; \mathrm{R}_{3}, \\ \mathbf{R}_{4}, \mathrm{R}_{5}=\mathrm{H} \end{gathered}$	35.3 ± 1.2	14.4 ± 0.6	0.70	2
5	$\begin{aligned} & \mathbf{R}_{1}-\mathrm{R}_{3}=\mathrm{CH}_{3} ; \mathrm{R}_{4}, \\ & \mathbf{R}_{5}=\mathrm{H} \end{aligned}$	40.7 ± 0.4	15.5 ± 0.2	0.020	5
6	$\mathrm{R}_{1}-\mathrm{R}_{5}=\mathrm{CH}_{3}$	39.8 ± 0.4	13.6 ± 0.4	0.00065	4

Scheme I

clopentadiene for 3 weeks at $140^{\circ} \mathrm{C}$ in a sealed tube. ${ }^{8}$ When lithium diisopropylamide and trioxane were used, the methyl ester 19 was prepared as a mixture of isomers. Lithium aluminum deuteride reduction followed by pyrolysis of 20 at $500^{\circ} \mathrm{C}$ gave 2 -isopropylidene-1,3-propanediol- $1,1-d_{2}$ in 87% yield. The dibromide 21 was prepared by Corey's procedure using dimethyl sulfide and N -bromosuccinimide. ${ }^{9}$ Conversion of the dibromide to 4 -isopropylidene-1-pyrazoline-3,3- d_{2} (15) was achieved as described earlier. ${ }^{10}$ Preparation of 16 was achieved as outlined

[^1]Scheme II

Scheme III

in Scheme III. Originally we had planned to synthesize 4-di-deuteriomethylene-3,3-dimethyl-1-pyrazoline, using the ketone 24 with Wittig reactions, and other methyleneation methods; ${ }^{11}$ these failed to give the desired products, either resulting in deuterium exchange or inappropriate materials. The deuterated 3 -methyl-4-methylene-1-pyrazolines 11 and 12 were prepared as outlined in Schemes IV and V. Oxidative rearrangement of the allylic selenide 34 was particularly successful. ${ }^{12}$ The 3-deuterio-3-methyl-4-methylene-1-pyrazoline (14) was prepared by the 1,3 -dipolar addition of diazoethane-I- d_{1} to allene.

[^2]Kinetic Measurements. The results of the gas-phase thermolysis of a series of 4-alkylidene-1-pyrazolines are reported in Table II. Each compound was transferred to a thermostated vessel maintained at a carefully regulated temperature. The initial pressure was generally $75-150$ torr, well above the kinetic first-order fall-off range. Deuterated and nondeuterated compounds used for comparisons were run within a short period of one another, and the temperature was measured by using a multiple junction thermocouple placed in a well inside the $250-\mathrm{mL}$ stainless steel reaction flask. The pressure was measured by using a transducer, and the data were digitized. The rates were calculated by using 16 or more points and had a correlation coefficient of 0.999 or better. The rates reported in Table II are the average of three or more runs, and the errors quoted are the 90% confidence limits. The secondary deuterium kinetic isotope effects (KIE) have all been corrected for incomplete deuteration by using analyses derived

Table II. Secondary Deuterium Kinetic Isotope Effects for Some 4-Methylene-1-pyrazoline Derivatives

	temp, ${ }^{\circ} \mathrm{C}$	$10^{3} k, \mathrm{~s}^{-1}$	$\left(k_{\mathrm{H}} / k_{\mathrm{D}}\right)^{\text {corr }}$	$\delta \Delta G^{*}, \mathrm{cal} \mathrm{mol}^{-1}$	ref
10	164.0 ± 0.1	1.94 ± 0.01			2
7	164.0 ± 0.1	1.63 ± 0.02	1.19 ± 0.03^{a}	157	2
8	164.0 ± 0.1	1.82 ± 0.02	1.07 ± 0.02	59	2
9	164.0 ± 0.1	1.51 ± 0.02	1.29 ± 0.03	221	2
3	180.0 ± 0.1	3.01 ± 0.03			this work
11	180.0 ± 0.1	2.55 ± 0.05	1.18 ± 0.03	149 ± 20	this work
12	180.0 ± 0.1	2.86 ± 0.05	1.05 ± 0.02		this work
13	180.0 ± 0.1	2.52 ± 0.02	1.19 ± 0.02	157 ± 20	this work
14	180.0 ± 0.1	2.94 ± 0.02	1.02 ± 0.02	17 ± 17	this work
2	180.0 ± 0.1	1.75 ± 0.02			this work
15	180.0 ± 0.1	1.57 ± 0.01	1.12 ± 0.02	102 ± 16	this work
4	180.0 ± 0.1	2.14 ± 0.01			this work
16	180.0 ± 0.1	1.83 ± 0.02	1.18 ± 0.03	149 ± 20	this work
17	180.0 ± 0.1	1.79 ± 0.05	1.20 ± 0.03	164 ± 20	this work

${ }^{a}$ Corrected for incomplete deuteration.
Table III. Product Proportions from the Thermolysis of 3-Methyl-4-methylene-1-Pyrazolines at $170^{\circ} \mathrm{C}$

reactant	$\left\\|^{\text {ratio }^{a}}\right\\|^{d_{2}}$
3	$3.95 \pm 0.07^{\text {b }}$
11	4.08 ± 0.07
12	4.41 ± 0.09
13	4.56 ± 0.09
14	3.81 ± 0.07

${ }^{a}$ Equilibrium ratio at $170^{\circ} \mathrm{C}$ is 0.743 . ${ }^{b}$ Determined by GC from three different samples each analyzed 3 times; the error indicated is the standard deviation of nine analyses.
from mass spectrometry. All samples were greater than 95% isotopically pure.

Product Studies. Only alkylidenecyclopropanes were produced upon the thermolysis of the pyrazolines studied. Tables III and IV give the gas chromatographic analyses of the structural isomers produced. These results were confirmed by both ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR. ${ }^{13}$ The products derived from the dimethyl compounds

Table IV. Product Proportions from the Thermolysis of Dimethyl-Substituted 4-Methylene-1-pyrazolines ($170^{\circ} \mathrm{C}$)

reactant	ratio $^{\alpha_{2}} / \Delta^{\alpha_{2}}$
$\mathbf{2}$	1.54 ± 0.02
$\mathbf{1 5}$	1.86 ± 0.08
4	4.43 ± 0.12
$\mathbf{1 6}$	5.25 ± 0.33
17	5.25 ± 0.17

${ }^{a}$ The equilibrium ratio at $170^{\circ} \mathrm{C}$ is 0.234 .
15-16 were found to be slowly interconverting under the reaction conditions and the observed values have been corrected to zero time by standard kinetic procedures. It was also necessary to check for any degenerate rearrangement when dealing with the dideuterio

[^3]Scheme IV

Scheme V

$$
\mathrm{MeM}=\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}
$$

compounds. The 2 -methylmethylenecyclopropane- d_{2} was found to be stable under the reaction conditions; however, the 2,2 -di-methylmethylenecyclopropanes- d_{2} (37 and 38) were intercon

verting slowly, and a correction was necessary for the degenerate rearrangement which is 21 times faster ${ }^{14}$ than the isomerization to isopropylidenecyclopropane (39).

Discussion

The decrease in activation energy from $47.2^{15} \mathrm{kcal} \mathrm{mol}^{-1}$ for azoethane to 42.8^{16} for azo-2-methyl-2-propane is generally attributed to the stabilization of the incipient radical by the addition of methyl groups, and a decrease of $1-2 \mathrm{kcal} \mathrm{mol}^{-1}$ per methyl is common for homolytic cleavage reactions. The data in Table I demonstrated that analogous substitution at C-3 or C-5 generally increases the activation energy and decreases the rate. Using

[^4]Table V. Percentage exo-Methylene- d_{2} for the
2,2-Dimethylmethylenecyclopropane and
2-Methylmethylenecyclopropane Produced upon Thermolysis (170 ${ }^{\circ} \mathrm{C}$)

reactant	\% exo- d_{2}	reactant	\% exo- d_{2}
15^{a}	55 ± 1	$\mathbf{1 1}$	64 ± 1
16^{a}	52 ± 1	12	46 ± 1

${ }^{a}$ Corrected for the degenerate rearrangement of 2,2-dimethyl-3,3-dideuteriomethylenecyclopropane- d_{2} to 2,2-dimethyldideuterio-methylenecyclopropane- d_{2}; see ref 13 .

Table VI. Percentage Isomer Proportions of Methylenecyclopropanes Obtained by the Thermolysis ($170^{\circ} \mathrm{C}$) of Deuterated
Monomethyl-4-methylene-1-pyrazolines

	cyclopropanes			
	methyl- methylene- d_{2}			
reactant	E	Z		endo
	ethylidene- d_{2}	exo		
$\mathbf{1 1}$	13	7	51	29
$\mathbf{1 2}$	8	11	37	44
$\mathbf{7 a}^{\boldsymbol{a}}$	9	1	17	73
$\mathbf{8}^{\boldsymbol{a}}$	1	9	80	10

${ }^{a}$ See ref 3.
secondary deuterium isotope effects, we have observed rates consistent with a $\mathrm{C}-\mathrm{N}$ bond-breaking process as the rate-determining step for the thermolysis of 4 -methylene-1-pyrazolines. ${ }^{3}$ Kinetically, we were not able to distinguish between a concerted breaking of two $\mathrm{C}-\mathrm{N}$ bonds and a stepwise process. When the products were examined, we were able to fit all the deuterated methylenecyclopropanes to a scheme involving an allyldiazenyl intermediate, e.g., Scheme I. The data in Tables II-IV require that an intermediate be involved. Whereas the thermolysis rates follow the order $3>12>11$, the product ratios are $3<11<$ 12, the deuterium isotope effect being larger on the product-determining step when substitution is on the exocyclic methylene, and the KIE being larger when the deuterium substitution is on the endocyclic α-methylene.

Deuteration of the isopropylidene compound 2 to give 15 decreases the thermolysis rate 12%. This constitutes a free energy change of $51 \pm 8 \mathrm{cal} / \mathrm{mol}$ per deuterium, considerably less than the generally accepted value of $80-120 \mathrm{cal} \mathrm{mol}^{-1}$ per deuterium. ${ }^{17}$ If this is calculated as a single-bond-cleavage process and the thermolysis rate for $\mathbf{2}$ is $2 k_{\alpha}$, then an intramolecular KIE (k_{α} / k_{β}) of 1.27 ± 0.04 is obtained and the value $\delta \Delta G^{*}$ per deuterium is $107 \pm 14 \mathrm{cal} \mathrm{mol}^{-1}$. Our previous mechanistic study required that the allyldiazenyl intermediates close by three modes x, y, and $z .{ }^{18}$ If we assume, as was found earlier, ${ }^{3}$ that the detuerated allylic methylene is slower to rotate into the cyclopropane conformation than is the CH_{2} group ${ }^{19}$ and use the value $k_{\mathrm{H}} / k_{\mathrm{D}}=1.40$ obtained from the parent system, then the values of $\mathbf{x} / \mathbf{y} / \mathbf{z}$ of 0.38:0.25:0.37 are obtained. An attractive alternative is to consider the loss of nitrogen from the initially formed intermediates 40 and 41 to produce the corresponding Chesick diradicals 42 and 43 , respectively. Such diradicals would then be expected to close, using the least motion principle, to the corresponding methylenecyclopropanes. f we assume that the intermediates 42 and 43 are produced in the proportions 56:44 on the basis of the KIE and

[^5]
that $\mathbf{4 2}$ closes 62% of the time by rotation of the $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$ termini,

42

43

as is the case from the thermolysis of 2 , then the amount of 37 produced would be 35% and the yield of 39 via 42 would be 21%, leaving 14% to come via 43 , and thus predicting a yield of 28% for 38, contrary to the experimental observations in Table V.

Replacing an α-hydrogen by methyl normally produces an acceleration of the thermolysis rate for azo compounds, ${ }^{1}$ but such is not the case for the 4-methylene-1-pyrazoline system. Notably, the 3,3-dimethyl compound 4 undergoes thermolysis 30% slower than the parent 1. Steric interactions can play a major role, if 4 is to attain a conformation such that the allylic resonance will accelerate the rate then the methyl groups can cause steric compression in the transition state; thus, the intermediate 45 for the thermolysis of 4 is expected to be a significant contributor. The secondary deuterium KIE for 16 is $75 \pm 10 \mathrm{kcal} \mathrm{mol}^{-1}$ per deuterium, only slightly less than the $80-110 \mathrm{cal} \mathrm{mol}^{-1}$ values that characterize complete carbon-nitrogen bond rupture. ${ }^{17}$ We thus

expect 16 to proceed principally through 45 . The 16% yield of isopropylidenecyclopropane would limit the participation via 40 to 45% of the reaction. The tertiary diazenyl radical 45 is expected to very rapidly loose nitrogen ${ }^{21}$ and could be expected to form the

[^6]Scheme VI

Table VII. Percentage Yield of Products Incorporating the Exocyclic Carbon of the Reactant into the Cyclopropane Ring of the Product (see Structure 1, Table I)

	compound	\% cyclopropane C	ref
$\mathbf{7}$		90%	2
1b	$\mathrm{R}_{1}=\mathrm{CD}_{3} ; \mathrm{R}_{2}-\mathrm{R}_{4}=\mathrm{H} ; \mathrm{R}_{5}=\mathrm{CH}_{3}$	$>92 \%$	a
1c	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{5}=\mathrm{CH}_{3} ; \mathrm{R}_{3}, \mathrm{R}_{4}=\mathrm{H}$	$>88 \%$	
$\mathbf{1 d}$	$\mathrm{R}_{1}=t-\mathrm{Bu} ; \mathrm{R}_{2}-\mathrm{R}_{5}=\mathrm{H}$	96%	

${ }^{\text {a }}$ See: Crawford, R. J.; Tokunaga, H.; Schrijver, L. M. H. C.; Godard, J. Y. Can. J. Chem. 1978, 56, 998-1004.
attached to the nitrogen counteracts the inductive effect that normally gives rise to the order $3^{\circ}>2^{\circ}>1^{\circ}$, and thus the initial cleavage, as demonstrated by the secondary deuterium KIE, occurs at the methylene carbon-nitrogen bond $\left(\mathrm{CH}_{2}-\mathrm{N}=\right)$. This cleavage results in a diazenyl radical ${ }^{21}$ that rapidly loses nitrogen to produce a Chesick intermediate which closes in a conventional manner to form the methylenecyclopropanes. Such a mechanism is consistent with both the rates and products for all of the 4 -methylene-1-pyrazolines. Anomalies arise in those cases wherein substituents are on the exo-cyclic methylene, and the products are more difficult to predict.

To date, four different 4-alkylidene--pyrazoline derivatives having one alkyl substituent on the exocyclic methylene (i.e., $\mathrm{RCH}=$) have been studied. In each case, the exocyclic carbon has a significantly greater tendency to become a cyclopropane carbon (see Table VII) than is the case for unsubstituted, or disubstituted ($\mathrm{H}_{2} \mathrm{C}=$ or $\mathrm{R}_{2} \mathrm{C}=$), compounds. Quite remarkably, Dolbier and Burkholder ${ }^{22}$ have observed a closely analogous situation for the 4 -(fluoromethylene)- and 4 -(difluoro-methylene)-1-pyrazoline. They have suggested that a set of partially equilibrating trimethylenemethane species are produced, analogous to Scheme VI and that "subtle deviations from the symmetry of the parent ($\mathrm{C}_{4} \mathrm{H}_{6}$) TMM could give rise, either via E_{a} or ΔS^{\ddagger} differences, to the observed preferred cyclizations". Theoretical support for a variety of singlet TMM derivatives having a very low barrier to interconversion has been provided by Feller et al. ${ }^{22}$ Which of the seven possible intermediates is first produced from the isomeric monomethyldideuterio substrates 7 , 8, 11, and 12 will no doubt depend upon the reaction dynamics of the leaving nitrogen and the ease of interconversion between the syn (5-HO, S-P, and S-DO) and anti series (A-HO, A-P, and A-DO). The substrates 7 and 8 generate initially intermediates in the $46-\mathrm{A}$ and $46-\mathrm{S}$ subset, whereas 10 and 11 may produce in both subsets depending upon the orientation of the methyl upon departure of the nitrogen.

Conclusions

Evidence is presented to support the characterization of the rate-determining step of 4 -methylene-1-pyrazoline thermolysis as being primarily affected by the cleavage of one carbon-nitrogen bond. An intermediate, or set of intermediates, is required to rationalize all the products. In the cases where methyl groups are placed α to the nitrogen, the reaction is slower and the normal kinetic order of $3^{\circ}>2^{\circ}>1^{\circ}$ does not hold, but products are readily explained from a Chesick-type intermediate. Stereochemical tests will be required to detail the interconversion of possible TMM intermediates.

Experimental Section

The ${ }^{1} \mathrm{H}$ NMR spectra were obtained by using a Bruker WP-80 spectrometer, and a Bruker WH-400 high-field cryospectrometer. The ${ }^{2} \mathrm{H}$ NMR analyses were measured in the WH-400 using long delay times between pulses.

Exact masses were determined on an A.E.I. MS- 50 mass spectrometer. Microanalyses were carried out by the Microanalytical Laboratory of the Department of Chemistry, University of Alberta.

The kinetic measurements were made by a procedure described previously. ${ }^{3}$

5-Carbomethoxy-6,6-dimethyl-2-norbornene (18). A mixture of freshly distilled cyclopentadiene ($20 \mathrm{~g}, 0.303 \mathrm{~mol}$ and methyl 3 -methyl-2-butenoate ($87.5 \mathrm{~g}, 0.768 \mathrm{~mol}$) was placed in four $90-\mathrm{mL}$ Pyrex tubes, degassed, sealed, and heated to $140^{\circ} \mathrm{C}$ for 3 weeks. When the tubes were opened, the contents were fractionally distilled to afford $16 \mathrm{~g}(29 \%)$ of 18, bp $93-96^{\circ} \mathrm{C}$ (20 torr), [lit. bp $68^{\circ} \mathrm{C}(2.5$ torr $\left.)\right] .{ }^{8}$

5-Carbomethoxy-6,6-dimethyl-5-(hydroxymethyl)-2-norbornene (19). A 2.3 M solution of n-butyllithium ($37 \mathrm{~mL}, 85 \mathrm{mmol}$) was added at -78 ${ }^{\circ} \mathrm{C}$ to a solution of diisopropylamine ($12.5 \mathrm{~mL}, 89 \mathrm{mmol}$) in THF (200 mL) under nitrogen atmosphere. After stirring for $1 \mathrm{~h} \mathrm{at}-78^{\circ} \mathrm{C}$ a solution of $18(14.5 \mathrm{~g}, 81 \mathrm{mmol})$ in 50 mL of THF was added dropwise. After 3 h , a large excess of paraformaldehyde ($28 \mathrm{~g}, 311 \mathrm{mmol}$) was added at once and again stirred at room temperature overnight. The product was purified by distillation, bp $89-95^{\circ} \mathrm{C}(0.06$ torr $)$, to give 10 $\mathrm{g}\left(61 \%\right.$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (2:1 mixture of isomers) (major isomer) $\delta 0.83(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, 1 \mathrm{H}), 2.10$ (s, 1 H , exch. with $\mathrm{D}_{2} \mathrm{O}$), $2.24(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~d}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (d, 1 H$), 4.16(\mathrm{~d}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~m}, 1 \mathrm{H})$, (minor isomer) $\delta 0.80(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, 1 \mathrm{H}), 1.96(\mathrm{~d}, 1$ H), 2.32 ($\mathrm{s}, 2 \mathrm{H}, 1 \mathrm{H}$ exch. with $\mathrm{D}_{2} \mathrm{O}$), 3.24 (d, 1 H), 3.72 (s, 3 H), 3.88 (d, 1 H), $6.26(\mathrm{~m}, 2 \mathrm{H})$; MS $m / e\left(\mathrm{M}^{+}\right.$) calcd 210.1251, obsd 210.1249. 6,6-Dimethyl-5-(hydroxymethyl)-5-(hydroxymethyl-d 2)-2-norbornene (20). Pulverized lithium aluminum deuteride ($2.3 \mathrm{~g}, 55 \mathrm{mmol}$) in 100 mL of ether was stirred under nitrogen at the reflux for 2 h . A solution of 19 ($9.5 \mathrm{~g}, 45 \mathrm{mmol}$) in 75 mL of ether was added at such a rate as to maintain a gentle reflux. The reaction mixture was refluxed overnight, and when it cooled, 2.3 mL of water, 2.3 mL of 15% sodium hydroxide, and 7 mL of water were added successively. Magnesium sulfate (10 g) was then added, and stirring was resumed for an additional hour. The organic solution was isolated by filtration, dried, and concentrated under reduced pressure. The product crystallized on standing to give $7.8 \mathrm{~g}(94 \%$ yield) recrystallized from ether/pentane: $\mathrm{mp} 215-217^{\circ} \mathrm{C}$.

For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$: $\mathrm{C}, 72.49$; H, 9.95. Found: C, 72.43; H, 9.82 .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}) 1.76(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}) 3.52$ (s, 2 H), $3.88(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~m}, 2 \mathrm{H})$.

2-Isopropylidene-1,3-dibromopropane-1,1-d \mathbf{d}_{2} (21). The nondeuterated material has been described previously. ${ }^{2}$ Thermolysis of 20 ($7.8 \mathrm{~g}, 42$ mmol) produced $4.26 \mathrm{~g}(87 \%$ yield) of the diol which was purified by distillation, bp $84^{\circ} \mathrm{C}$ (0.2 torr). The mass spectrum indicated $98.6 \pm$ $0.1 \% \mathrm{~d}_{2}$, based on the molecular ion peak. The dibromide, 2.23 g (59% yield), was obtained from the glycol by using the procedure of Corey et al.; ${ }^{9}$ bp $50^{\circ} \mathrm{C}\left(0.01\right.$ torr); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.82$ (s, 6 H), 4.15 (s, 2 H), isotopic purity $99 \pm 1 \%$.

4-Isopropylidene-1-pyrazoline-5,5- d_{2} (15). Transformations starting with 21 were carried out in a manner analogous to that for the nondeuterated material, i.e., first conversion of 21 to 1,2-dicarbethoxy-4-iso-propylidenepyrazolidine- $5,5-d_{2}$ followed by hydrolysis to the hydrochloride salt and then oxidation. For the oxidation step, the hydrochloride salt ($\mathbf{3 . 7} \mathrm{g}, 25 \mathrm{mmol}$) was added in small portions over 3 h to a mechanically stirred slurry of red mercuric oxide (35 g) and anhydrous sodium sulfate (35 g) in 80 mL of absolute ether. The product was purified by distillation to give $2.1 \mathrm{~g}\left(77 \%\right.$ yield): ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}) $\delta 1.64$ (triplet, $6 \mathrm{H}, J=2 \mathrm{~Hz}), 4.86(\mathrm{~m}, 2.18 \mathrm{H}, J=2 \mathrm{~Hz}), 91 \pm 1 \%$ deuteration.

1,2-Dicarbomethoxy-3,3-dimethyl-4-hydroxypyrazolidine (23). A suspension of lithium aluminum hydride ($50 \mathrm{~g}, 1.31 \mathrm{~mol}$) in dry THF (800 mL) was added slowly to a well-stirred suspension of $5,5-\mathrm{di}$ -methyl-4-hydroxy-3-pyrazolidone ${ }^{25}(45 \mathrm{~g}, 346 \mathrm{mmol})$ in dry THF (800 mL) maintained under nitrogen at room temperature. After completion of the addition, the reaction mixture was heated slowly to ebullition. The mixture was then refluxed (2 h) and cooled and distilled water (50 mL), 15% sodium hydroxide (50 mL), and distilled water (150 mL) were added successively and the mixture stirred 1 h .

An aliquot of the solution was concentrated, dried, and recrystallized to give 22: $\mathrm{mp} 85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}$) $\delta 0.9(\mathrm{~s}, 3 \mathrm{H}), 1.0(\mathrm{~s}, 3 \mathrm{H})$, $2.57(\mathrm{dd}, 1 \mathrm{H}, J=11, \mathrm{~J}=3 \mathrm{~Hz}), 3.21(\mathrm{dd}, 1 \mathrm{H}, J=6, J=11 \mathrm{~Hz}) 3.62$ (br s, 3 H exch. with $\mathrm{D}_{2} \mathrm{O}$), 3.75 (dd, $J=6, J=3 \mathrm{H}$); MS, $m / e\left(\mathrm{M}^{+}\right)$ calcd for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ 116.0945, obsd 116.0950 .

The remaining reaction mixture was cooled to $-25^{\circ} \mathrm{C}$, and methyl chloroformate was added in large excess $(100 \mathrm{~mL})$. The mixture was stirred at room temperature for 2 days, the solids filtered and washed with ether, and the organic solution was concentrated to give a yellow oil. The major product (60%) was analyzed by GC-MS as the O carbomethoxy derivative of 23 .

The crude oil was then dissolved in methanol (300 mL) and treated with potassium carbonate solution (112 g in 200 mL of water), stirred for 2 h , and then neutralized with acetic acid. The solution was then reduced to one-third of its volume by evaporation and extracted with ether by using a Soxhlet system for 2 days. The pure material was obtained by chromatography on a Kieselgel-60G column. Recrystallization from ether gave 40 g (50% yield): $\mathrm{mp} 76^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 6 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}$, 2 H); MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 232.1055, obsd 232.1050.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$: $\mathrm{C}, 46.35 ; \mathrm{H}, 6.94 ; \mathrm{N}, 12.06$. Found: C, $46.65 ; \mathrm{H}, 7.06, \mathrm{~N}, 12.07$.

1,2-Dicarbomethoxy-3,3-dimethylpyrazolidin-4-one (24). Chromium trioxide $(25.8 \mathrm{~g}, 258 \mathrm{mmol})$ was added to a stirred solution of pyridine ($41 \mathrm{~g}, 519 \mathrm{mmol}$) in 700 mL of methylene chloride. The burgundy solution was stirred at room temperature for 30 min , and then a solution of 23 ($9.7 \mathrm{~g}, 42 \mathrm{mmol}$) in 20 mL of methylene chloride was added in one portion. After the solution was stirred an additional 2 h at room temperature, the solution was decanted from a tarry residue which was washed with 200 mL of ether. The combined organic fractions were filtered through a pad of Florosil and concentrated. Distillation gave 7.7 $\mathrm{g}\left(80 \%\right.$ yield) of a colorless oil: bp $90^{\circ} \mathrm{C}(0.1$ torr $):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $1.44(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{~m}, 2 \mathrm{H})$; IR 1776, 1715 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O})$; MS, $m / e\left(\mathrm{M}^{+}\right)$calcd 230.0898, obsd 230.0903.

24- d_{2}. A total of four exchanges were carried out on 9 g of 24 in methanol- $O-d(8.1 \mathrm{~g}, 246 \mathrm{mmol})$ containing 0.03 g of sodium metal warmed to $45^{\circ} \mathrm{C}$. When the mixture was cooled and extracted into methylene chloride, the methylene signal at $\delta 4.0$ was monitored. The final sample was of $95 \pm 1 \%$ isotopic purity (54% recovery).

1,2-Dicarbomethoxy-3,3-dimethyl-4-methylenepyrazolidine-5,5-d ${ }_{2}$ (25). Methyltriphenylphosphonium bromide ($4.4 \mathrm{~g}, 12.3 \mathrm{mmol}$) and 40 mL of dry DME were added to a $200-\mathrm{mL}$ three-necked flask fitted with a stirrer and dropping funnel and cooled to $0^{\circ} \mathrm{C}$ under an atmosphere of nitrogen. A 1.57 M solution of n-butyllithium (7.15 mL) was added with vigorous stirring. The temperature was then increased to $65^{\circ} \mathrm{C}$ and maintained for 3 h . When the solution was cooled to $0^{\circ} \mathrm{C}$, a solution of $24-d_{2}(2.3 \mathrm{~g}, 10 \mathrm{mmol})$ in 20 mL DME was added dropwise. The temperature was gradually increased to $50^{\circ} \mathrm{C}$, and stirring was maintained overnight. Acetone (1 mL) was added and the mixture stirred 30 min. After a conventional workup, the concentrated oil was eluted through a Kieselgel-60G column with ether/pentane (30/70). Distillation gave 1.06 g (46% yield), bp $80^{\circ} \mathrm{C}(0.5$ torr $)$, of 25 : ${ }^{1} \mathrm{H}$ NMR (nondeuterated sample) $\left(\mathrm{CDCl}_{3}\right) 1.52(\mathrm{~s}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 4.96(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H})$ (the deuterated sample lacked the signal at $\delta 4.26$); MS, $m / e\left(\mathbf{M}^{+}\right)$of nondeuterated material calcd 228.1106, obsd 228.1106. Mass spectrum indicated $96.0 \pm 0.1 \%$ isotopic purity for 25.

3,3-Dimethyl-4-methylenepyrazolidene-5,5- d_{2} Hydrochloride (26). The procedure used was analogous to that of the nondeuterated material described earlier: ${ }^{10}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.51(\mathrm{~s}, 6 \mathrm{H}), 4.12(\mathrm{t}, J=2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.26(\mathrm{~m}, 2 \mathrm{H})$. For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}: \mathrm{C}, 48.48 ; \mathrm{H}, 8.82 ; \mathrm{N}, 18.85$. Found: $\mathrm{C}, 48.15 ; \mathrm{H}, 8.80 ; \mathrm{N}$, 18.94.

3,3-Dimethyl-4-methylene-1-pyrazoline-5,5- \boldsymbol{d}_{2} (16). The hydrochloride $26(0.9 \mathrm{~g}, 6.0 \mathrm{mmol})$ was added slowly to a stirred slurry of red
(23) Dolbier, W. R., Jr.; Burkholder, C. R. J. Am. Chem. Soc. 1984, 106, 2139-2142.
(24) Feller, D.; Tanaka, K.; Davidson, E. R.; Borden, W. T. J. Am. Chem. Soc. 1982, 104, $967-972$ and references cited therein.
(25) Martynov, V. F.; Belov, I. B. Zh. Obsch. Khim. 1961, 31, 1509-1510.
mercuric oxide (9 g) and anhydrous sodium sulfate (9 g) in 25 mL of dry ether. The product was purified by distillation to give 0.357 g (54% yield) of 16: bp $55^{\circ} \mathrm{C}(27 \mathrm{torr}){ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.4(\mathrm{~s}, 6 \mathrm{H}), 5.0(\mathrm{~s}, 1$ $\mathrm{H}), 5.2(\mathrm{~s}, 1 \mathrm{H})$; $>95 \%$ isotopic purity.

3,3-Dimethyl-4-dideuteriomethylene-1-pyrazoline-5,5- d_{2} (17). The procedure was analogous to that described previously ${ }^{6}$ for the nondeuterated material except that 2-diazopropane was added to allene- $d_{4}{ }^{26}$ Mass spectrometry indicated $99 \pm 1 \%$ isotopic purity. ${ }^{1} \mathrm{H}$ NMR consisted of a single peak at $\delta 1.4$.

5-Carbomethoxy-5-(1-hydroxyethyl)-2-norbornene (27). n-Butylithium ($186 \mathrm{~mL}, 1.6 \mathrm{~N}$) (298 mmol) was added, at $-78^{\circ} \mathrm{C}$, under a nitrogen atmosphere, to a solution of diisopropylamine ($30.3 \mathrm{~g}, 300$ mmol) in 900 mL of dry THF. A solution of 5 -carbomethoxy-2-norbornene ($44 \mathrm{~g}, 290 \mathrm{mmol}$) in 120 mL of dry THF was added dropwise at $-78^{\circ} \mathrm{C}$. After 1 h , a solution of freshly distilled acetaldehyde (20 g , 440 mmol) in 100 mL of THF wass added dropwise and the solution then allowed to warm to room temperature. A conventional workup gave 48 g (85% yield) of $27, \mathrm{bp} 80^{\circ} \mathrm{C}(0.5$ torr).

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 67.32 ; \mathrm{H}, 8.22 ; \mathrm{O}, 24.46$. Found: C , 67.27; H, 8.13; O, 24.51 .

5-(1-Hydroxyethyl)-5-(hydroxymethyl-d d_{2})-2-norbornene (28). Pulverized lithium aluminum deuteride ($5 \mathrm{~g}, 119 \mathrm{mmol}$) in 270 mL of dry ether was warmed for 3 h under a dry stream of nitrogen. When the solution cooled, a solution of $27(31 \mathrm{~g}, 158 \mathrm{mmol})$ in 30 mL of dry ether was added. The mixture was refluxed overnight and when it cooled, 5 mL of water, 5 mL of 15% sodium hydroxide, and 15 mL of water were added successively. Ether extraction, drying, concentration, and distillation gave a product of 18.7 g of 28 (70% yield), bp $95-100^{\circ} \mathrm{C}(0.2$ torr). For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$: C , $71.39 ;$ H, $9.59 ;$ O, 19.02. Found: C, 71.38; H, 9.57; O, 19.17.

2-Methylene-1,3-Butanediol-1,1-d $\mathbf{2}_{2}$. A sample of 28 ($18.7 \mathrm{~g}, 110$ mmol) was thermolyzed by dropping onto a glass-bead column heated to $450^{\circ} \mathrm{C}$ at 0.1 torr. The trapped product was purified by distillation to give 9 g (79% yield) of the desired diol: bp 112-113 (16 torr); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}$, exch. with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.40(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}>99 \%$ isotopic purity. For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$: C, $58.80 ; \mathrm{H}, 9.87$; O, 31.33. Found: C, 58.86; H, 9.80; O, 31.41.

3-Chloro-2-(chloromethyl-d ${ }_{2}$)-1-butene (29). Dry triphenylphosphine ($69 \mathrm{~g}, 263 \mathrm{mmol}$) was added to a stirred solution of 2-methylene-1,3-butanediol- $1,1-d_{2}(9 \mathrm{~g}, 87 \mathrm{mmol})$ in 90 mL of dry THF and 210 mL of carbon tetrachloride. When the solution was refluxed for 2 h under a stream of nitrogen, a large quantity of white solid was formed. When it cooled, 400 mL of pentane was added and the solids removed by filtration. Distillation gave 6.6 g of 24 (54% yield): bp $73^{\circ} \mathrm{C}$ (57 torr); ${ }^{1} \mathrm{H}$ NMR $\delta 1.74$ (d, 3 H) 4.76 (m, 1 H) 5.34 (d, 2 H). Mass spectral analysis indicated $99 \pm 1 \%$ isotopic purity. The material was used without delay.

1,2-Dicarbethoxy-3-methyl-4-methylenepy razolidine-5,5- d_{2} (30). Sodium hydride ($2.33 \mathrm{~g}, 69 \mathrm{mmol}$) was added to a solution of sym-dicarbethoxyhydrazine ($12.1 \mathrm{~g}, 69 \mathrm{mmol}$) in 80 mL of HMPA maintained at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After 6 h of stirring, $29(9.3 \mathrm{~g}$, 67 mmol) was added and the stirring continued an additional 72 h . A 0.65 M solution of sodium ethoxide in 107 mL of ethanol was added followed by sodium iodide (0.6 g), and stirring continued for 48 h at room temperature. Filtration, concentration, and ether extraction gave an organic layer which was dried over magnesium sulfate then concentrated and chromatographed on Kieselgel-60G. Distillation gave 5.6 g of 30 (35% yield): bp $68{ }^{\circ} \mathrm{C}(0.1$ torr $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta 1.30(\mathrm{~m}, 9 \mathrm{H})$, $3.92(\mathrm{~d}, J=15 \mathrm{~Hz}, 0.04 \mathrm{H}), 4.23(\mathrm{~m}, 4 \mathrm{H}) 4.60(\mathrm{~d}, J=15 \mathrm{~Hz}, 0.04 \mathrm{H})$ $4.71(\mathrm{~m}, 1 \mathrm{H}) 5.01(\mathrm{~d}, 1 \mathrm{H}) 5.07(\mathrm{~d}, 1 \mathrm{H})$. The mass spectrum indicated $96.7 \pm 0.1 \%$ dideuteration. MS, $m / e\left(\mathrm{M}^{+}\right)$of the nondeuterated maerial calcd 242.1261 , obsd 242.1260 .

3-Methyl-4-methylenepyrazolidine-5,5-d \mathbf{d}_{2} Hydrochloride (31). A solution of potassium hydroxide (1.5 g) in 15 mL of n-propanol, 1.5 mL of water, and $30(0.9 \mathrm{~g}, 4 \mathrm{mmol})$ was maintained at $100^{\circ} \mathrm{C}$ for 3 h under an inert atmosphere. The mixture was then distilled under vacuum (0.1 torr) and the distillate trapped at $-80^{\circ} \mathrm{C}$. Acidification at $0^{\circ} \mathrm{C}$ with excess concentrated hydrochloric acid gave 0.5 g (95% yield) of the hydrochloride 31: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.41(\mathrm{~d}, 3 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 5.23$ $(\mathrm{d}, 1 \mathrm{H}), 5.29(\mathrm{~d}, 1 \mathrm{H}), 4.0(\mathrm{~m}, 0.05 \mathrm{H})$; exact mass calcd for nondeuterated material 99.0919 , obsd 99.0874 . Isotopic purity was $97 \pm 1 \%$ by mass spectrometry.

3-Methyl-4-methylenepyrazoline-5,5-d $\mathbf{2}_{2}$ (11). The hydrochloride 31 ($0.45 \mathrm{~g}, 3 \mathrm{mmol}$) dissolved in 2 mL of methanol was added slowly to a slurry of red mercuric oxide (3.4 g) and sodium sulfate 3.4 g) in 100 mL of ether. After 0.5 h of stirring, the solids were filtered off and washed with ether, and the organic layer was concentrated. The residue was
(26) Morse, A. T.; Leitch, L. C. J. Org. Chem. 1958, 23, 990-993.
purified by trap-to-trap distillation ($0.16 \mathrm{~g}, 50 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 1.19(\mathrm{~d}, 3 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}), 4.64(\mathrm{~d}, 1 \mathrm{H})$, and trace signals at 4.57 and 4.38 indicating $97 \pm 1 \%$ isotopic purity; ${ }^{2} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ indicated $>99.8 \%$ of total deuterium at the 5 -position.

Preparation of Methoxyethoxymethyl Ether (32). The procedure of Corey ${ }^{28}$ using chloromethyl 2 -methoxyethyl ether ($10.5 \mathrm{~g}, 8.4 \mathrm{mmol}$) of $27(13 \mathrm{~g}, 66 \mathrm{mmol})$ in dry THF was used. The ether 32 was purified by distillation, bp $125-130^{\circ} \mathrm{C}$ (0.5 torr), to give 14 g (74% yield); MS, m / e (M^{+}) calcd 284.1617, obsd 284.1621.

2-Methylene-3-O-[(2-methoxyethoxy)methyl]-1,3-butanediol-1,1-d \mathbf{d}_{2} (33). Pulverized lithium aluminum deuteride ($3 \mathrm{~g}, 75 \mathrm{mmol}$) in 100 mL of dry ether was used to reduce 32 ($14 \mathrm{~g}, 49 \mathrm{mmol}$); after the solution refluxed overnight, the product was worked up in a manner analogous to 28. Distillation gave 9.9 g (83% yield) of the norbornenyl β-hydroxymethoxyethoxymethyl ether, bp $120^{\circ} \mathrm{C}$ (1 torr). For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}$: $\mathrm{C}, 65.60 ; \mathrm{H}, 9.44 ; \mathrm{O}, 24.97$. Found: C, 65.71; H, 9.50; O, 24.99.

Flash thermolysis was described above for 28 gave a 79% yield of 33 : $\mathrm{bp} 83^{\circ} \mathrm{C}(0.2$ torr $):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~d}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}$, exch. in $\mathrm{D}_{2} \mathrm{O}$), $4.40(\mathrm{q}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.18$ (d, 0.04 H), the MEM group signals were at $\delta 4.75(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 4 \mathrm{H}), 3.40$ $(\mathrm{s}, 3 \mathrm{H})$. For the nondeuterated material: Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 56.82; H, 9.54; O, 33.64. Found: C, $56.71 ; \mathrm{H}, 9.51 ; \mathrm{O}, 33.15$. Interconversion of 33 to 35 . The alcohol $33(1.9 \mathrm{~g}, 10 \mathrm{mmol})$ and 2-nitrophenylselenocyanate ($2.72 \mathrm{~g}, 12 \mathrm{mmol}$) were dissolved in 30 mL of dry pyridine, and tri-n-butylphosphine ($3 \mathrm{~mL}, 12 \mathrm{mmol}$) was added dropwise over 1 h according to the method of Clive. ${ }^{12}$ Chromatographic workup on silica gel gave 2.76 g (73% yield) of a yellow oil; MS, m / e $\left(\mathrm{M}^{+}\right)$for nondeuterated sample calcd 375.0579 , obsd 375.0579 .

Rearrangement of 34 to 35 . The selenide $34(6.16 \mathrm{~g}, 16 \mathrm{mmol})$ and 3 mL of pyridine were dissolved in 100 mL of methylene chloride, and an excess of 15% hydrogen peroxide (35 mL) was added. After an induction period, an exothermic reaction occurred with the formation of a large amount of precipitate and a change from yellow to orange. The solution was cooled, 50 mL of water was added, and the pH was lowered to 2 by using the hydrochloric acid. Filtration and ether extraction of the aqueous phase followed by drying and distillation gave 2.67 g of 35 (85% yield). ${ }^{1} \mathrm{H}$ NMR and ${ }^{2} \mathrm{H}$ NMR indicated $98 \pm 2 \%$ deuterium exclusively in the vinylic position.

2-(Methylene- \boldsymbol{d}_{2})-1,3-butanediol (36). The ether 35 ($3 \mathrm{~g}, 16 \mathrm{mmol}$) and 5.2 mL of 3 N hydrochloric acid in 25 mL of ethanol were heated for 1 h . Neutralization with sodium bicarbonate followed by filtration, concentration, and distillation gave $1.4 \mathrm{~g}(87 \%$ yield) of the diol 36: bp $68^{\circ} \mathrm{C}(0.1$ torr $){ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~d}, 3 \mathrm{H}) 2.87(\mathrm{~s}, 2 \mathrm{H}$, exch. with $\mathrm{D}_{2} \mathrm{O}$), $4.22(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{q}, 1 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR indicated deuteration exclusively n the vinylic position.

Conversion of 36 to 12. The diol 36 was treated to the same sequence as $28 \rightarrow \mathbf{2 9} \rightarrow \mathbf{3 0} \rightarrow \mathbf{3 1}$ and upon oxidation gave 12: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.38(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (half of AB quartet, $J=21.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.59 (half of AB quartet, $J=21.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.57(\mathrm{~d}, 0.039 \mathrm{H}), 4.60(\mathrm{~d}, J=0.039 \mathrm{~Hz}), 96 \pm 1 \%$ isotopic purity. ${ }^{2} \mathrm{H}$ NMR indicated $>99 \%$ deuterium at the exo-methylene position.

Ethyl \boldsymbol{N}-Ethyl-1,1- \boldsymbol{d}_{2}-carbamate. Pulverized lithium aluminum deuteride ($4.5 \mathrm{~g}, 120 \mathrm{mmol}$) in 100 mL of ether was refluxed for 1 h under nitrogen. When the solution was cooled, freshly distilled acetonitrile ($4.6 \mathrm{~g}, 112 \mathrm{mmol}$) in 20 mL of ether was added dropwise followed by 1 h of reflux. When it was cooled to $0^{\circ} \mathrm{C}, 4.5 \mathrm{~mL}$ of distilled water, 4.5 mL of 15% sodium hydroxide, and 12.5 mL of water were added successively. After it was cooled to $-20^{\circ} \mathrm{C}$, ethyl chloroformate (50 g , 460 mmol) was added dropwise. The solids were removed by filtration, and after ether extraction, drying, and concentration, the carbamate, 7.6 $\mathrm{g}\left(57 \%\right.$ yield), bp $78{ }^{\circ} \mathrm{C}(14$ torr $)$, was obtained: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H}), 4.12(\mathrm{q}, 2 \mathrm{H}), 4.78\left(\mathrm{~s}, 1 \mathrm{H}\right.$, exch. with $\mathrm{D}_{2} \mathrm{O}$, $98 \pm 2 \%$ isotopic purity.

Ethyl \boldsymbol{N}-Nitroso- \mathbf{N}-ethyl-1,1-d \boldsymbol{d}_{2}-carbamate. The procedure used was that described for the N-methyl derivative. ${ }^{29}$ Starting from the carbamate ($7.6 \mathrm{~g}, 64 \mathrm{mmol}$), a pink liquid, $6.8 \mathrm{~g}(72 \%$ yield $)$, bp $70^{\circ} \mathrm{C}(14$ torr), was obtained: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.0(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, 3 \mathrm{H}), 4.55$ $(\mathrm{q}, 2 \mathrm{H})$ for the major isomer, and $1.12(\mathrm{~s}, 7 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H}), 4.10(\mathrm{q}$, 2 H) for a minor isomer, $98 \pm 2 \%$ isotopic purity.

3-Methyl-4-methylene-1-pyrazoline-3- \boldsymbol{d}_{1} (14). A solution of potassium hydroxide- $O-d(2 \mathrm{~g})$ and 15 mL of carbitol- $O-d$ and 15 mL of ether was warmed to $50^{\circ} \mathrm{C}$ in a $250-\mathrm{mL}$ three-necked flask fitted with a stirrer, a dropping funnel, and a bent tube ${ }^{30}$ leading to a condenser set for
(27) Cope, A. C.; Ciganek, E.; LeBel, N. A. J. Am. Chem. Soc. 1959, 81, 2799-2804.
(28) Corey, E. J.; Gras, J. L.; Ulrich, P. Tetrahedron Lett. 1976, 809-812.
(29) Hartman, W. N.; Phillips, R. "Organic Synthesis"; Wiley: New York, 1943; Collect. Vol. 2, pp 464-465.
downward distillation. A solution of ethyl N-nitroso- N-ethyl- $1,1-d_{2}-$ carbamate ($2 \mathrm{~g}, 13 \mathrm{mmol}$) in 20 mL of ether was added over 5 min . Fresh portions of ether were added until the distillate came over colorless. The orange solution of diazoethane- $1-d$ in ether was cooled to $-80^{\circ} \mathrm{C}$ and transferred to a pressure bottle containing a large excess of allene $(50 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$. After a few hours at room temperature, the color disappeared and the reaction mixture was worked up as described previously, ${ }^{31} 0.55 \mathrm{~g}$ (42% yield based on carbamate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.49(\mathrm{t}, 3 \mathrm{H}), 4.88$ (half AB q, $J=21 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (m, 1 H), 5.12 (m, 1 H), 5.02 (half $\mathrm{AB} \mathrm{q}, J=21 \mathrm{~Hz}, 1 \mathrm{H}$), 99% isotopic purity.

3-Methyl-4-methylene- d_{2}-1-pyrazoline-5,5- d_{2} (13) was prepared as described previously ${ }^{31}$ by the 1,3-dipolar addition of diazoethane ${ }^{30}$ to allene- $d_{4} \cdot{ }^{26}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.51(\mathrm{~d}, 3 \mathrm{H}), 4.82(\mathrm{q}, 1 \mathrm{H}), 99 \pm 1 \%$ isotopic purity.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for support for this research. We thank the University of Alberta Mass Spectrometry Laboratory and the NMR Facility for the spectra they measured.

Registry No. 2, 55503-95-2; 3, 67301-35-3; 4, 55503-94-1; 11, $99810-34-1 ; 12,99810-35-2 ; 13,99810-36-3 ; 14,99810-37-4 ; 15$,
(30) Wilds, A. L.; Meader, A. L. J. Org. Chem. 1948, 13, 763-765.
(31) Crawford, R. J.; Tokunaga, H.; Schrijver, L. H. M. C.; Godard, J. C. Can. J. Chem. 1978, 56, 998-1004.

99810-38-5; 16, 99810-39-6; 17, 99810-40-9; 18, 83846-54-2; exo-19, 99810-41-0; endo-19, 99810-58-9; exo-20, 99810-42-1; endo-20, 99810-59-0; 20 (unlabeled derivative), 99810-60-3; 21, 99810-43-2; 21 (1,3diol), 99810-61-4; 22, 99810-44-3; 22 (3-oxo derivative), 98069-71-7; 23, 99810-45-4; 24, 99810-46-5; 24- d_{2}, $99810-64-7$; 25, $99810-47-6 ; 26$, 99810-48-7; 27, 99810-49-8; 28, 99810-50-1; 28 (unlabeled derivative), 62872-93-9; 29, 99810-51-2; 30, 99810-52-3; 31, 99810-53-4; 32, 99810-54-5; 33, 99829-05-7; 33 (unlabeled derivative), 99810-69-2; 34, 99810-55-6; 34 (unlabeled derivative), 99829-06-8; 35, 99810-56-7; 36, 99810-57-8; $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCO}_{2} \mathrm{Me}, 924-50-5 ; \mathrm{ClCO}_{2} \mathrm{Me}, 79-22-1 ; \mathrm{Ph}_{3} \mathrm{P}=$ $\mathrm{CH}_{2}, 3487-44-3 ; \mathrm{MeC}\left(=\mathrm{N}_{2}\right) \mathrm{Me}, 2684-60-8 ; \mathrm{D}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CD}_{2}$, 1482-85-5; $\mathrm{MeCHO}, 75-07-0 ; \mathrm{MeCH}(\mathrm{OH}) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{CD}_{2} \mathrm{OH}, 99810-65-8$; MeCH$(\mathrm{OH}) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH}, 99810-66-9 ; \mathrm{ClCH}_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}, 3970-21-6$; $2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SeCN}, 51694-22-5$; $\mathrm{MeCD}_{2} \mathrm{NHCO}_{2} \mathrm{Et}, 99810-70-5$; MeCN , 75-05-8; $\mathrm{ClCO}_{2} \mathrm{Et}$, 541-41-3; $\mathrm{EtO}_{2} \mathrm{CN}\left(\mathrm{CD}_{2} \mathrm{Me}\right) \mathrm{NO}, 99810-71-6 ; \mathrm{H}_{2}-$ $\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}, 463-49-0 ; \mathrm{N}_{2}=\mathrm{CH}_{2} \mathrm{Me}, 1117-96-0 ; \mathrm{EtO}_{2} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{Et}$, 4114-28-7; cyclopentadiene, 542-92-7; 1,2-dicarbethoxy-4-iso-propylidenepyrazolidine-5,5- d_{2}, $99810-62-5$; 4-isopropylidene-pyrazolidine-5,5- d_{2} hydrochloride, 99810-63-6; 5-carbomethoxy-2-norbornene, 6203-08-3; norbornenyl β-hydroxymethoxyethoxymethyl eth-er- β, β - d_{2}, 99810-67-0; norbornenyl β-hydroxymethoxyethoxymethyl ether, 99810-68-1; 1-methyl-2-methylenecyclopropane- d_{2}, 99829-07-9; ethylenecyclopropane- d_{2}, 99829-08-0; 1,1-dimethyl-2-ethylidenecyclo-propane- d_{2}, 99829-09-1; isopropylenecyclopropane- d_{2}, 99829-10-4; 1,1-dimethyl-2-(methylene- d_{2}) cyclopropane, 99810-72-7; 1-methyl-2-(meth-ylene- d_{2})cyclopropane, 67399-01-3.

Dioxetane Radical Cations in Solution. An ESR and Cyclic Voltammetry Study

Stephen F. Nelsen, ${ }^{*+}$ Daniel L. Kapp, ${ }^{\dagger}$ Fabian Gerson, ${ }^{\dagger}$ and Javier Lopez ${ }^{\ddagger \S}$
Contribution from S. M. McElvain Laboratories of Organic Chemistry, Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Physikalisch-Chemisches Institut der Universität Basel, CH-4056 Basel, Switzerland. Received April 26, 1985

Abstract

The radical cation formed upon electrochemical oxidation either of adamantylideneadamantane 1 in an O_{2}-saturated solution or of the corresponding dioxetane 2 is shown by ESR spectroscopy to be 2^{+}. This radical cation is relatively long-lived in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ solvent mixtures at low temperatures. The resolved hyperfine splittings are 0.325 mT (4 $H)$ and $0.075 \mathrm{mT}(6 \mathrm{H})$. Using deuterated derivatives, the larger splitting has been assigned to two pairs of $\gamma_{\text {eq }}-$ protons and the smaller one to the two remaining pairs of γ_{eq}-protons and one pair of β-protons, with each β-proton situated in a different adamantylidene moiety of 2^{+}(the notation β and $\gamma_{e q}$ refers to the structure of 1). These data are consistent with a C_{2} conformation of 2^{+}which is twisted at the dioxetane ring and does not enantiomerize on the hyperfine time scale at $-110^{\circ} \mathrm{C}$. Dioxetane radical cations 11^{+}and 13^{+}generated from isopropylideneadamantane 10 and 3-pentylideneadamantane 12, respectively, have also been studied under similar conditions by ESR spectroscopy. Their hyperfine data give no evidence of twisting at the dioxetane rings and provide a further example for the sensitivity of the long-range splittings to orientation of bonds relative to the spin-bearing orbital. Cyclic voltammograms indicate that the E° value for 2 is 0.66 V anodic of 1 at $-78{ }^{\circ} \mathrm{C}$, so that electron transfer from 1 to 2^{+}is exothermic by $15 \mathrm{kcal} / \mathrm{mol}$.

In his review of the radical aspects of photooxygenation, Bartlett ${ }^{1}$ reported an unpublished observation with M. J. Shapiro that $\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{+}$converts adamantylideneadamantane 1 and ${ }^{3} \mathrm{O}_{2}$ to dioxetane 2 , pointing out the similarity of this reaction to the formation of endoperoxides from dienes, as described by Barton and co-workers. ${ }^{2}$ He suggested ${ }^{1}$ that both reactions proceed

[^7]through the organic radical cation. In the same year, Haynes and co-workers, ${ }^{3}$ as well as Tang and co-workers, ${ }^{4}$ also argued for the intermediacy of diene radical cations in the conversion of dienes to endoperoxides. Later on, Nelsen and Akaba ${ }^{5}$ reported the catalytic conversion of $\mathbf{1}$ to 2 by $\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{~N}^{+}$, a reaction similar to those observed previously for the dienes. ${ }^{2-4}$ Simultaneously, with Clennan and co-workers, ${ }^{6}$ these authors ${ }^{5}$ found that elec-

[^8]
[^0]: (1) Engel, P. E. Chem. Rev. 1980, 57, 99-150.
 (2) Crawford, R. J.; Chang, M. H. Tetrahedron 1982, 38, 837-842
 (3) Chang, M. H.; Crawford, R. J. Can. J. Chem. 1981, 59, 2556-2567.
 (4) Engel, P. S.; Shen, L. Can. J. Chem. 1974, 52, 4040-4044.
 (5) (a) Berson, J. A. In "Diradicals"; Borden, W. T., Ed.; Wiley: New York, 1982. (b) Lazzara, H. G.; Harrison, J, I.; Rule, M.; Hilinski, E. F.; Berson, J. A. J. Am. Chem. Soc. 1982, 104, 2233-2243. (c) Berson, J. A. Acc. Chem. Res. 1978, 11, 446-453.

[^1]: (6) Crawford, R. J.; Tokunaga, H. Can. J. Chem. 1974, 52, 4033-4039.
 (7) The X-ray structure of permethyl-4,4-bis-($\Delta^{1,2}$-pyrazolinylidene) has been determined by: Bushby, R. J.; Pollard, M. D. Tetrahedron Lett. 1978, 3851-3854. And the $\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$ bond angle is 103.8°. The $\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}$ bond angle of a 1-pyrazoline has also been determined as 99.1° (see: Rousseaux, M. P. Acta Crystallogr. 1978, 288, 720.
 (8) Previous attempts resulted in a 5% yield, see: Alder, K.; Roth, W. Chem. Ber. 1957, 90, 1830-1837.
 (9) Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 4339-4342.
 (10) Crawford, R. J.; Cameron, D. M.; Tokunaga, H. Can. J. Chem. 1974, 52, 4025-4032.

[^2]: (11) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611-3613. Sowerby, R. L.; Coates, R. N. J. Am. Chem. Soc. 1972, 94, 4758-4759.
 (12) Clive, D. L. J.; Chittattu, G.; Curtis, N. J.; Menchen, S. J. Chem. Soc., Chem. Commun. 1978, 770-771.

[^3]: (13) There is no thermochemical preference by deuterium for the endo or exo position since a sample of tetradeuteriomethylenecyclopropane gives a 67:33 mixture at equilibrium. ${ }^{9}$ Because of the long relaxation times associated with methylenecyclopropanes, we used CW methods where possible, or long delays between pulses for FT spectra.

[^4]: (14) Le Fevre, G. N.; Crawford, R. J. J. Org. Chem. 1986, 51, in press.
 (15) Sandhu, H. S. J. Phys. Chem. 1968, 72, 1857-1065
 (16) Levy, J. B.; Copeland, B. K. W. J. Am. Chem. Soc. 1960, 82, 5314-5318.

[^5]: (17) Halevi, E. A. Prog. Phys Org. Chem. 1963, 1, 109-221. Zavitsas, A A.; Seltzer, S. J. Am. Chem. Soc. 1964, 86, 1265-1267. Crawford, R. J.; Takagi, K. J. Am. Chem. Soc. 1972, 94, 7406-7416. Seltzer, S.; Dunne, F. T. J. Am. Chem. Soc. 1965, 87, 2628-2635. Seltzer, S.; Mylonakis, S. G. J. Am. Chem. Soc. 1907, 89, 6584-6589.
 (18) The modes x, y, and z used here are equivalent to a partial rate ratio, i.e., $x=k_{x} /\left(k_{x}+k_{y}+k_{z}\right), y=k_{y} /\left(k_{x}+k_{y}+k_{z}\right)$, etc., and require that the initial cleavage step is not reversible. None of our control experiments has demonstrated any detectable isomerization such as $2 \rightleftharpoons 4$ or $11 \rightleftharpoons 12$.
 (19) This type of isotope effect has been observed earlier in the isomerization of dimethylmethylenecyclopropane to ethylidenemethylcyclopropane, wherein $k_{\mathrm{H}} / k_{\mathrm{D}}=1.31 \pm 0.04$: Gajewski, J. J.; Chow, S. K. J. Am. Chem. Soc. 1977, 99, 5696-5707.

[^6]: (20) Chesick, J. P. J. Am. Chem. Soc. 1963, 85, 2720-2723

[^7]: ${ }^{\dagger}$ S. M. McElvain Laboratories of Organic Chemistry.
 ${ }^{\ddagger}$ Physikalisch-Chemisches Institut der Universitāt Basel.
 ${ }^{\text {i }}$ Present address: Ilford AG, CH-1701, Fribourg, Switzerland.

[^8]: (1) Bartlett, P. D. "Organic Free Radicals"; Pryor, W. A., Ed.; American Chemical Society: Washington, DC, 1978; pp 26-28.
 (2) Barton, D. H. R.; Haynes, R. K.; Leclerk, G.; Magnus, P. D.; Menzies, I. D. J. Chem. Soc., Perkin Trans. 1 1975, 2055.
 (3) (a) Haynes, R. K. Aust. J. Chem. 1978, 31, 121, 131. (b) Haynes, R. K.; Probert, M. K.; Wilmont, I. D. Ibid. 1978, 31, 1737.
 (4) Tang, R.; Yue, H. J.; Wolf, J. K.; Mares, F. J. Am. Chem. Soc. 1978, 101, 5248.
 (5) Nelsen, S. F.; Akaba, R. J. Am. Chem. Soc. 1981, 103, 2096.
 (6) Clennan, E. L.; Simmons, W.; Almgren, C. W. J. Am. Chem. Soc. 1981, 103, 2098.

